Emanuele Bagnaschi

Emanuele Bagnaschi's home page

Researcher at INFN Laboratori Nazionali di Frascati

1-Minute Read

Emanuele Bagnaschi (DESY), Felix Brümmer (Montpellier U.), Wilfried Buchmüller (DESY), Alexander Voigt (DESY), Georg Weiglein (DESY)

JHEP 03 (2016) 158

DOI: 10.1007/JHEP03(2016)158

e-print: 1512.07761 [hep-ph]

We investigate the stability of the electroweak vacuum for two-Higgs-doublet models with a supersymmetric UV completion. The supersymmetry breaking scale is taken to be of the order of the grand unification scale. We first study the case where all superpartners decouple at this scale. We show that contrary to the Standard Model with one Higgs doublet, matching to the supersymmetric UV completion is possible if the low-scale model contains two Higgs doublets. In this case vacuum stability and experimental constraints point towards low values of $\tan \beta \lesssim~ 2$ and pseudoscalar masses of at least about a TeV. If the higgsino superpartners of the Higgs fields are also kept light, the conclusions are similar and essentially independent of the higgsino mass. Finally, if all gauginos are also given electroweak-scale masses (split supersymmetry with two Higgs doublets), the model cannot be matched to supersymmetry at very high scales when requiring a 125 GeV Higgs. Light neutral and charged higgsinos therefore emerge as a promising signature of a supersymmetric UV completion of the Standard Model at the grand unification scale.

Recent Posts